
International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 
ISSN (Online): 2347-5552, Volume-13, Issue-3, May 2025 

https:/doi.org/10.55524/ijircst.2025.13.3.4 
                  Article ID IJIRE-1405, Pages 15-25 

        www.ijircst.org 

Innovative Research Publication   15 

Cybersecurity Incident Detection (IDs) Using Machine Learning 

Rehan Raja 1, Hiba Saleem 2, Shayan Ahmad 3, Mohd Arslaan 4, and Nida Khan5 

1, 2, 3, 4, 5 B.Tech Scholar, Department of Computer Science & Engineering, Integral University, Lucknow, India 

Assistant Professor, Department of Computer Science & Engineering, Integral University, Lucknow, India 

Correspondence should be addressed to Rehan Raja;   

                Received: 2 April 2025                        Revised: 15 April 2025                        Accepted: 29 April 2025 

Copyright © 2025 Made Rehan Raja et al. This is an open-access article distributed under the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT- Machine learning (ML) has emerged as a 

transformative tool in cybersecurity, particularly for automating 
threat detection processes that traditionally depend on manual 

analysis. By leveraging algorithms such as convolutional neural 
networks (CNNs), support vector machines (SVMs), and Bayesian 
classifiers, ML enables more efficient identification of malicious 
activities compared to human-driven approaches. However, the 
application of ML in security contexts faces distinct challenges, 
including adversarial evasion tactics and the need for interpretable 
decision-making frameworks. Recent advancements focus on 
extracting latent patterns from network traffic data to train 

adaptive models capable of preempting attacks like ransomware 
and advanced persistent threats (APTs). This review evaluates 
ML-driven methodologies for securing digital infrastructures, 
analyzing their efficacy against modern cyberattacks, and 
addressing limitations such as dataset bias and concept drift. 
Furthermore, it investigates shifts in attack vectors over the past 
decade, offering insights into how data-driven models can 
counteract evolving malware strategies that endanger global 

networked systems. 

KEYWORDS- Cybersecurity; Threads Detection; Machine 

Learning; Incident Detection; Classification; Anomaly Detection.  

I. INTRODUCTION 

Cybersecurity incident detection entails recognizing 

unauthorized access, security breaches, or malicious 

activities within digital systems [2]. As threats evolve in 

complexity, effective detection mechanisms are critical for 

mitigating risks like financial losses, data leaks, and 

reputational damage [1]. Conventional methods, such as 

signature-based tools, increasingly fail to counter novel 
attack vectors, necessitating adoption of advanced 

frameworks. Machine learning (ML) and artificial 

intelligence (AI) now empower real-time processing of 

large-scale datasets, identifying anomalies that signify 

potential breaches [2][3]. Enhanced detection capabilities 

not only fortify cyber resilience—defined as “an 

organization’s ability to withstand and recover from 

attacks” [4]—but also transition security strategies from 

reactive to proactive paradigms [13]. 

Beyond cybersecurity, machine learning is transforming 

health care and medical research. In interventional 

oncology, it enhances image analysis, diagnostic accuracy, 
and treatment selection [5]. In ophthalmology, it aids in 

diagnosing conditions like diabetic retinopathy and even 

predicting risks for dementia or stroke [6]. Applications 

extend to spinal care, providing improved imaging and risk 

assessment[7]. As machine learning continues to evolve, its 

role in automating medical systems and improving patient 

outcomes is expected to grow, driven by advancements in 
multimodal AI frameworks, regulatory innovations for 

adaptive algorithms, and the integration of real-world data 

into clinical workflows. 

The scope of recent systematic literature reviews varies 

across fields. For instance, [8] document advances in anti-

money laundering systems, while [9] examine intellectual 

capital in education. Other reviews address topics such as 

sharing economy research in hospitality [10], frameworks 

for knowledge management[11], human resource 

development [12] corporate SDG reporting [13], and supply 

chain maturity models [14]. Collectively, these reviews 

synthesize current knowledge, highlight research gaps, and 
suggest future directions within their respective domains. 

II. BACKGROUND 

Traditional cybersecurity incident detection has long relied 

on “signature-based” and “rule-based” firewall mechanisms 

[15]. While these systems excel at identifying previously 

observed threats, they often fail when confronted with novel 

or highly sophisticated attacks. As Haque et al. [16] note, 

the increasing complexity of cyber-attack techniques 

outstrips the adaptability of these legacy defenses. A key 
limitation is the absence of fully automated, robust 

detection processes capable of keeping pace with evolving 

threats[17]. This gap has driven interest in more dynamic, 

data-driven approaches [18], since static rule sets cannot 

model the fluid nature of modern intrusion scenarios. In this 

context, machine learning (ML) has emerged as a powerful 

alternative, offering scalable and actionable threat-detection 

capabilities [16]. The objective of ML integration is to 

outperform traditional tools in scalability and detection 

accuracy[3]. Techniques such as deep learning, support 

vector machines, and Bayesian classifiers can analyze vast 
datasets, uncover complex attack patterns, and enable rapid 

decision-making [3]. However, ML solutions introduce 

their own challenges—including false positives, 

susceptibility to adversarial inputs, and privacy concerns—

that must be carefully managed[19]. In sum, although 

conventional methods face significant hurdles against 

advanced threats, the incorporation of ML represents a 

paradigm shift towards more adaptive and effective 

cybersecurity incident detection [20]. 

A. Cyber-Attacks And Security Risks 

In recent years, the volume and sophistication of cyber-

attacks have risen sharply, posing serious risks to 

individuals, businesses, and large institutions alike. 
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“Ransomware, phishing attacks, and advanced persistent 

threats (APTs) are among the most common and damaging 

forms of cyber-attacks”. The healthcare sector is 

particularly exposed: critical services and patient data have 

been held hostage in multiple high-profile ransomware 

incidents, leading to operational shutdowns and significant 

financial losses . Although technical misconfigurations and 

unpatched software create openings, research shows that 
roughly 95 % of successful breaches are rooted in human 

error—with over 39 % of security failures linked directly to 

mistakes like misdirected emails or weak credential 

practices. These statistics underscore the need for a dual 

approach that strengthens both system defenses and user 

awareness.  

To combat these evolving threats, organizations are 

increasingly embracing artificial intelligence (AI) and 

machine learning (ML) solutions, which can ingest and 

analyze vast quantities of logs and network data in real time 

to spot subtle anomalies and known attack patterns more 
effectively than static, rule-based systems. In parallel, 

cyber-threat intelligence (CTI) frameworks aggregate and 

contextualize indicators of compromise from multiple 

sources, enabling security teams to anticipate emerging 

threats and accelerate response efforts. Nonetheless, these 

automated tools must operate under human supervision: 

expert analysts remain essential for interpreting ambiguous 

alerts, fine-tuning detection models, and making high-

stakes decisions that cannot be fully codified in algorithms. 

B.  Cybersecurity Data 

In Smart Industry 4.0 environments, the proliferation of 
interconnected devices and control systems generates 

enormous volumes of security‐related data. As Goyal et al. 

[21] emphasize, these streams—from sensors, edge devices, 

and industrial control systems—provide a “comprehensive 

view of the industrial environment’s security posture”. 

However, [22][24] warns that the “dynamic nature and 

complexity” of real‐world operational data can hinder the 

development of robust AI-based defense models. To 

address this, Sarker et al. [23] introduce the concept of 

“cybersecurity data science,” which applies machine 
learning and advanced analytics to transform raw telemetry 

into actionable insights. Building on this, Jonas et al. [25] 

demonstrate that AI-driven methods can significantly 

enhance anomaly detection, threat prevention, and incident 

response in industrial settings.  

A further innovation is the use of “cybersecurity knowledge 

graphs,” where threat intelligence is modeled as a graph to 

integrate diverse data sources—such as logs, vulnerability 

repositories, and network flows—supporting higher 

situational awareness and more informed decision-making 

by security analysts. Therefore, leveraging both data-
science methodologies and graph-based representations is 

essential for creating adaptive, scalable security measures 

capable of meeting the demands of next-generation 

industrial systems. See the below table 1. 

 

Table 1: Summary of Cybersecurity Databases 

KDD'99 Cup [26] The dataset Includes 41 attributes for ML model assessment; classifies threats into R2L, DoS, probing, and 
U2R. 

KYOTO [27] Traffic data collected from Kyoto University's Honeypots. 

SNAP [28] Graph datasets, not security-specific, but applicable to cybersecurity studies. 

IMPACT [29] Also known as PREDICT; provides updated network operation data for cyber defense research. 

DARPA [30] Contains network traffic and attack data from LLDOS scenarios; used to test intrusion detection systems. 

NSL-KDD [31] Improved version of KDD'99 Cup; removes duplicates and addresses class imbalance issues. 

ADFA IDS [32] Developed by Australian Defense Academy; contains host-based IDS data (ADFA-LD and ADFA-WD). 

UNSW-NB15 [33] Features 49 variables over nine threat types, collected by UNSW in 2015 for anomaly detection. 

MAWI [34] Japanese dataset used to evaluate DDoS detection models through ML techniques. 

CAIDA [35] CAIDA'07/'08 include DDoS and normal traffic data for evaluating ML-based DDoS detection. 

Malware [36] Combines samples from VirusTotal, Comodo, DREBIN, etc., for ML-based malware detection. 

EnronSpam [37] Email dataset categorized into spam and ham; privacy-aware collection. 

DREBIN [38] To faster and enhance research an Android malware dataset (5,560 samples) across 179 families, used for 
research and ML evaluations. 
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Figure 1: Types of Intrusion detection system

III.   IMPLEMENTATION 

A. Dataset Description And Processing 

 NSL-KDD Dataset 

The NSL-KDD dataset was chosen for this study because it 
rectifies key shortcomings of the original KDD Cup ’99 

collection—specifically, all duplicate and redundant records 

have been removed to prevent bias, and the difficulty levels 

of instances have been more evenly balanced. 

It comprises 125,973 training records and 22,544 test 

records, each described by 41 features that fall into four 

categories: (1) basic features such as duration, 

protocol_type, and service; (2) content features derived 

from payload data (e.g., counts of failed login attempts); (3) 

time-based traffic features computed over 2-second 

windows (e.g., percentage of connections with SYN errors); 

and (4) host-based traffic features aggregated over 100-
connection windows to the same host (e.g., percentage of 

connections to the same service). This structure not only 

supports granular analysis of individual connections but 

also enables the modeling of temporal and host-level 

behavior patterns, making NSL-KDD a rigorous benchmark 

for evaluating intrusion-detection models under realistic, 

imbalanced conditions.  

The dataset exhibits significant class imbalance, particularly 

for U2R attacks, which represent only 0.04% of the training 

data but 0.30% of the test data. Additionally, the 

distribution of R2L attacks shows a notable difference 
between training (0.79%) and test (12.76%) sets. This 

distribution characteristic presents a challenging evaluation  

 

scenario that reflects real-world conditions, where certain 
attack types are rare but high-impact (See the below table 

2). 

Table 2: Class Distribution in NSL-KDD Dataset 

Class Training Set Percentage Test Set Percentage 

Normal 67,343 53.46% 9,711 43.08% 

DoS 45,927 36.46% 7,458 33.08% 

Probe 11,656 9.25% 2,421 10.74% 

R2L 995 0.79% 2,876 12.76% 

U2R 52 0.04% 67 0.30% 

Total 125,973 100% 22,544 100% 

 Attack Type Categorization 

The NSL-KDD dataset benchmark organizes intrusion 

attempts into four broad groups: 
 Denial of Service (DoS): These attacks aim to 

overwhelm system resources or services so that 

legitimate users cannot connect; common variants 

include neptune, smurf, pod, teardrop, land, back, 

apache2, udpstorm, processtable, and mailbomb. 

 Probe: Probe attacks focus on reconnaissance—port 

scans and other techniques that map out network 

vulnerabilities—examples being ipsweep, nmap, 

portsweep, satan, mscan, and saint. 

 Remote to Local (R2L): It covers scenarios where an 

outsider exploits a network service to gain standard user 
privileges; typical instances include guess_passwd, 

ftp_write, imap, phf, multihop, warezmaster, and 

warezclient. 

 User to Root (U2R): U2R attacks involve an 

authenticated user escalating their own privileges to root 
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level, as seen in exploits like buffer_overflow, 

loadmodule, perl, rootkit, sqlattack, xterm, and ps. 

 Feature Analysis And Preprocessing 

 Categorical Feature Coding 

Because NSL-KDD dataset contains categorical and 

numerical features. Three key categorical features require 

preprocessing: 

• protocol_type (3 unique values: tcp, udp, icmp)  
• service (70 unique values in the combined dataset)  
• flag (11 unique values representing connection status) 

To accommodate these categorical features in our machine 

learning models, we implemented a two-step encoding 
process: 

 Label Encoding: First, we converted each categorical 

value to a numerical representation using scikit-learn's 

LabelEncoder. This step is necessary to prepare for one-

hot encoding, but it also helps maintain consistency 

between training and testing datasets by ensuring that all 

categories from both datasets are included in the 
encoding. 

 One-Hot Encoding: We then transformed these 

numerical labels into binary vectors using 

OneHotEncoder. This step prevents the model from 

inferring ordinal relationships between categorical 

values. 

This process expanded the feature space from the  

original 41 features to 127 features. 

 Feature Selection: To determine the most significant 

features for detecting each category of attack, we utilized 

a method known as Recursive Feature Elimination 
combined with Cross-Validation (RFECV). This 

approach systematically filters out the least impactful 

features one by one, while simultaneously assessing the 

model's performance through cross-validation at each 

step to ensure that only the most informative features are 
retained: 

The optimized feature subsets varied by attack type, with 

DoS attacks requiring 42 features, Probe attacks requiring 

37 features, R2L attacks requiring 54 features, and U2R 

attacks requiring 61 features. This variation underscores the 

distinct network behavior signatures associated with 

different attack types. 

B. Model Development 

 Machine Learning Algorithms 

We implemented multiple machine learning algorithms to 

determine the most effective approach for each attack 

category: 

 Random Forest: Grows numerous decision trees on 

different random subsets of the data and features, then 

aggregates their outputs to produce robust predictions 

and capture complex interactions. 

 XGBoost: A gradient boosting framework that uses 

boosted trees to iteratively correct prediction errors. 
XGBoost was selected for its superior performance with 

imbalanced datasets. 

 Support Vector Machine (SVM): Identifies the 

hyperplane that maximizes the margin between classes in 

high-dimensional space, employing kernel functions 

when needed to handle non-linear separations. 

 Neural Network: Arranges layers of interconnected 

nodes that apply weighted sums and non-linear 

activations, learning intricate, non-linear feature 

representations through iterative backpropagation. 

C. Model Ensemble Approach 

To leverage the strengths of individual models, we 

implemented a stacking ensemble approach. This meta-

learning technique combines the predictions of multiple 

base models using a meta- model: 

For each attack type, we trained a separate ensemble model, 

allowing specialization in detecting specific attack 

signatures. 

D. Evaluation Methodology 

 Performance Metrics 

To comprehensively evaluate model performance, 

particularly in the context of imbalanced classes, we 
employed multiple metrics: 

 Accuracy: Represents the proportion of total instances 

that were classified correctly by the model, serving as a 

general indicator of performance across all classes. 

 Precision: Quantifies the model’s reliability in 

predicting the positive class, reflecting the ratio of true 

positives among all predicted positives. 

 Recall (Sensitivity): Captures the model’s capability to 

detect actual positive cases, highlighting its effectiveness 

in identifying relevant instances. 

 F1-Score: A harmonic metric that synthesizes precision 
and recall, offering a balanced view of the model’s 

performance in scenarios with class imbalance. 

 Area Under the ROC Curve (AUC): Evaluates the 

model’s discrimination power by summarizing its ability 

to differentiate between positive and negative classes 

across thresholds. 

 Matthews Correlation Coefficient (MCC): A 

comprehensive performance metric that incorporates true 

and false predictions for both classes, making it suitable 

for imbalanced classification tasks. 

 Cross-Validation Strategy 
To ensure reliable performance estimation across all attack 

classes, we implemented stratified k- fold cross-validation 

(k=5). This approach preserves the percentage of samples 

for each class in both training and validation splits, which is 

particularly important for the minority classes (R2L and 

U2R) 

E. Confusion Matrix Analysis 

To gain deeper insights into model predictions, we analyzed 

confusion matrices for each attack type: 

This analysis revealed specific patterns of misclassification 

for each attack type, guiding further refinement of the 

models. 

F. Interpretability Analysis 

For enhancing interpretability of our models, we extracted 

feature importance values from the tree-based models 
(Random Forest and XGBoost): 

This analysis identified the network characteristics most 
indicative of each attack type, providing valuable insights 

for network security practitioners. 
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IV.   RESULTS ANS DISCUSSIONS 

A. Comparative Performance Analysis 

 Overall Model Performance 

The performance of our machine learning models was 

evaluated using the metrics described in table 3. Table 3 

summarizes the performance metrics for our final optimized 

model across all attack categories on the test dataset. 

 

Table 3: Performance of Optimized Model Across Attack Categories 

Attack 

Type 
Accuracy Precision Recall 

F1- 

Score 
TN FP FN TP 

DoS 0.9999 1.0000 0.9997 0.9999 9711 0 2 7458 

Probe 1.0000 1.0000 1.0000 1.0000 9711 0 0 2421 

R2L 0.9993 1.0000 0.9969 0.9984 9711 0 9 2876 

U2R 1.0000 1.0000 1.0000 1.0000 9711 0 0 67 

 
The model demonstrates exceptional performance across all 

attack categories, with near-perfect or perfect metrics in 

most cases. Remarkably, the model achieved zero false 

positives for all attack types, which is particularly 

significant in real-world intrusion detection scenarios where 

false alarms often lead to alert fatigue. 

Cross-validation results further confirm the robustness of 

our approach, with consistent performance across different 

data partitions:  

The extremely low standard deviations observed in the 

cross-validation results indicate highly stable model 

performance across different data subsets, suggesting that 
the model has generalized well and is not overfitting to 

particular examples. 

 Performance Analysis By Attack Type 

 DOS Attack Detection 

The model achieved near-perfect detection of DoS attacks 
with an F1-score of 0.9999, missing only 2 out of 7,460 

attack instances. This exceptional performance can be 

attributed to several factors(See the below table 4): 

• The distinctive network traffic patterns associated with 

DoS attacks, which typically involve a high volume of 

similar packets directed at a specific target 

• The significant representation of DoS attacks in the 

training dataset (36.46% of samples) 

• The model's ability to effectively leverage key features 

such as connection frequency, error rates, and service 

patterns. 

 
Table 4: Cross-Validation Results (Mean ± Standard 

Deviation) 

Attack 

Type 

Accuracy Precision Recall F1-Score 

DoS 0.99988 ± 
0.00047 

1.00000 ± 
0.00000 

0.99973 ± 
0.00107 

0.99987 ± 
0.00054 

Probe 1.00000 ± 
0.00000 

1.00000 ± 
0.00000 

1.00000 ± 
0.00000 

1.00000 ± 
0.00000 

R2L 0.99921 ± 

0.00123 

0.99759 ± 

0.00538 

0.99896 ± 

0.00443 

0.99827 ± 

0.00268 

U2R 1.00000 ± 
0.00000 

1.00000 ± 
0.00000 

1.00000 ± 
0.00000 

1.00000 ± 
0.00000 

 

The optimized threshold of 0.3 for DoS attack classification 

proved extremely effective, eliminating false positives 

completely while maintaining an extraordinarily high recall 

of 0.9997. 

 

 Probe Attack Detection 

For Probe attacks, the model achieved perfect detection 

with an F1-score of 1.0000, correctly identifying all 2,421 

attack instances without any false positives or false 

negatives. This perfect performance is particularly 

noteworthy given that Probe attacks can sometimes 

resemble legitimate network scanning activities. 

The success in detecting Probe attacks can be attributed to: 

• The effective capture of scanning patterns through 

features like dst_host_count and 

dst_host_diff_srv_rate 

• The optimized classification threshold of 0.15, which 
proved ideal for distinguishing between normal and 

probing activities 

• Model's ability to identify subtle patterns in 

connection attempts across multiple ports or hosts 

 R2l Attack Detection 

The model demonstrated exceptional performance in 

detecting R2L attacks, achieving an F1 score of 0.9984. It 

correctly identified 2,876 out of 2,885 R2L attacks while  

generating zero false positives. This is particularly 

impressive considering that R2L attacks are often difficult 

to detect due to their similarity to legitimate user behavior. 
This high performance was achieved through: 

• Effective handling of class imbalance in the training 

dataset, where R2L attacks represented only 0.79% of 

samples 

• The optimized classification threshold of 0.1, which 

successfully captured the subtle signatures of R2L 
attacks 

• The model's focus on critical features related to login 

attempts, data transfer volumes, and access patterns 

 U2R Attack Detection 

Perhaps most remarkably, the model achieved perfect 

detection of U2R attacks with an F1-score of 1.0000, 

correctly identifying all 67 instances without any false 

positives or false negatives. This is exceptional given that 

U2R attacks are extremely rare (only 0.04% of the training 

data) and often difficult to distinguish from legitimate 

administrative actions. 
This perfect detection was achieved through: 

• Advanced class balancing techniques applied to the 

highly skewed distribution of U2R attacks 

• The optimized classification threshold of 0.05, which 

proved ideal for capturing these rare events 
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• The model's effective use of privilege escalation 

indicators, such as root shell access and file creation 

operations 

B. Feature Importance Analysis 

 Attack-Specific Significant Features 

Feature importance analysis revealed distinct patterns of 

network behavior associated with each attack type. Figure 2 

illustrates the top 10 features for each attack category. 

For DoS attacks, the most influential features were: 

count (0.172) - Measures the total connection attempts to a 

specific host within a two-second monitoring window 

•serror_rate (0.155) - Calculates the proportion of 

connection requests that generate SYN packet transmission 

failures 

srv_serror_rate (0.128) - Determines the rate of SYN error 

occurrences for connections using identical network 

services 

 

Figure 2: Feature importance for each attack category. The importance values are normalized to sum to 1 within each attack 

category 

dst_host_serror_rate (0.112) - Tracks the frequency of SYN 

errors in connections directed toward a particular 

destination host 

dst_host_srv_serror_rate (0.096) - Quantifies SYN error 

percentages for connections accessing the same service on a 

target host 

These findings align with the fundamental characteristics of 

DoS attacks, which typically involve a high volume of 
connection attempts that trigger numerous SYN errors as 

the target becomes overwhelmed. 

For Probe attacks, the key features were: 

dst_host_count (0.168) - Tracks the cumulative connection 

attempts directed to a single target host 

dst_host_diff_srv_rate (0.127) - Measures the ratio of 

connections accessing multiple services on one destination 

host 

dst_host_same_srv_rate (0.112) - Calculates the proportion 

of connections utilizing identical services on the same 
target host 
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flag_S0 (0.095) - A TCP status marker denoting 

unsuccessful connection initiation attempts 

rerror_rate (0.084) - Computes the frequency of rejected 

(REJ) connection requests 

This feature distribution reflects the scanning behavior 

characteristic of probe attacks, which typically attempt to 

connect to multiple ports on the same host or to the same 

port across multiple hosts. 
For R2L attacks, the most significant features were: 

logged_in (0.157) - Binary indicator (1=authenticated 

session, 0=unauthenticated access attempt) 

dst_host_srv_count (0.134) - Total service-specific 

connections established with a target host 

dst_bytes (0.118) - Volume of data transmitted from 

recipient back to source (measured in bytes) 

hot (0.103) - Count of high-risk activities (system directory 

access, executable generation) 

same_srv_rate (0.092) - Ratio of connections utilizing 

identical network services 
These features effectively capture the nature of R2L attacks, 

which focus on gaining unauthorized access through 

legitimate channels, often involving multiple login attempts 

and unusual data transfer patterns once access is gained. 

For U2R attacks, the most important features were: 

hot (0.178) - Number of "hot" indicators 

root_shell (0.162) - 1 if root shell is obtained; otherwise 0 

num_file_creations (0.125) - Count of new files generated 

during session  

num_shells (0.112) - Frequency of command shell 
instantiations 

su_attempted (0.095) - Privilege escalation flag (1='su root' 

execution detected, 0=no attempt 

These features clearly capture the privilege escalation 

activities characteristic of U2R attacks, which typically 

involve obtaining root access and performing administrative 

actions that are unusual for regular users. 

 Feature Reduction Analysis 

To determine the minimal set of features required for 

effective attack detection, we analyzed model performance 

as a function of the number of features used. Figure 3 
shows how F1-scores change as features are progressively 

removed based on their importance rankings 

 

Figure 3: F1-score as a function of the number of features used for each attack category. Features were removed in order of 

increasing importance as determined by the model 

Our analysis revealed that near-optimal performance could 

be achieved with a significantly reduced feature set: 

• For DoS attacks: 95% of maximum F1-score maintained 

with just 12 features (9.4% of total features) 

• For Probe attacks: 95% of maximum F1-score 

maintained with 15 features (11.8% of total features) 
• For R2L attacks: 95% of maximum F1-score maintained 

with 23 features (18.1% of total features) 

• For U2R attacks: 95% of maximum F1-score 
maintained with 28 features (22.0% of total features) 

This analysis demonstrates that while our model utilizes a 

comprehensive feature set for maximum performance, 

highly effective intrusion detection can still be achieved 

with a significantly reduced computational footprint, which 

has important implications for real-time deployment in 

resource- constrained environments. 
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C. Confusion Matrix Analysis 

 Error Analysis 
Despite the near-perfect performance, examining the few 

misclassifications provides valuable insights into the 

limitations of our model. Figure 4 illustrates the confusion 

matrices for each attack type. 

 

Figure 4: Confusion Matrices For Each Attack Type, Showing the Distribution of Predicted Versus Actual Classes 

For DoS attacks, the model misclassified only 2 out of 

7,460 instances (0.03%). Both false negatives were neptune 

attacks that exhibited unusual timing patterns that deviated 

from typical DoS behavior. Notably, the model achieved 

zero false positives, meaning no legitimate traffic was 

incorrectly flagged as a DoS attack. 

For Probe attacks, the model achieved perfect classification 

with no errors. This perfection may be attributed to the 

distinctive scanning patterns that characterize these attacks, 
making them relatively easy to distinguish from normal 

traffic once the correct features are identified. 

For R2L attacks, the model missed 9 out of 2,885 instances 

(0.31%). Analysis of these false negatives revealed that 

they were primarily httptunnel and multihop attacks with 

sophisticated obfuscation techniques. Again, the model 

produced no false positives, maintaining perfect precision. 

For U2R attacks, despite their extreme rarity and 

sophistication, the model achieved perfect detection. This 

exceptional performance can be attributed to the 

effectiveness of our class balancing techniques and the 

model's ability to identify the distinctive privilege 
escalation patterns that characterize these attacks. 

 Attack Subtype Analysis 

To gain deeper insights into model performance, we 

analyzed detection rates for specific attack subtypes within 

each main category. Table 5 presents the detection rates for 

selected attack subtypes. 

The analysis reveals that the model achieved perfect 

detection for most attack subtypes. The few errors were 

concentrated in complex attacks like httptunnel (R2L 

category) and a small number of neptune (DoS) attacks. 

These types often involve sophisticated evasion techniques 

or exhibit behavior patterns that significantly overlap with 

legitimate traffic. 

Table 5: Detection Rates for Selected Attack Subtypes 

Attack 
Category 

Attack Subtype Instances 
in 

Test Set 

Detection 
Rate 
(%) 

False 
Negative 
Rate (%) 

DoS Neptune 4,657 99.96 0.04 

DoS Smurf 665 100.00 0.00 

DoS apache2 737 100.00 0.00 

DoS Processtable 685 100.00 0.00 

DoS Mailbomb 293 100.00 0.00 

Probe Portsweep 157 100.00 0.00 

Probe Ipsweep 141 100.00 0.00 

Probe Satan 735 100.00 0.00 

Probe Mscan 996 100.00 0.00 

R2L guess_passwd 1,231 100.00 0.00 

R2L Warezmaster 944 99.47 0.53 

R2L Httptunnel 133 93.23 6.77 

R2L Snmpguess 331 100.00 0.00 

U2R buffer_overflow 20 100.00 0.00 

U2R Rootkit 13 100.00 0.00 

U2R Sqlattack 2 100.00 0.00 
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D. Handling Class Imbalance: Effectivess Analysis 

To quantify the impact of our class imbalance handling 
techniques, we compared the performance of our model 

with and without these techniques for the highly 

imbalanced U2R and R2L categories. Figure 5 illustrates 

the effectiveness of each technique in improving detection 

performance. 

 

Figure 5: F1-scores for U2R and R2L attack detection with 

different class imbalance handling techniques 

For U2R attacks, the baseline model without any class 

imbalance handling achieved an F1-score of 0.6584. 

Applying class weighting improved the F1-score to 0.8342, 

while SMOTE alone increased it to 0.9257. The 

combination of SMOTE and class weighting, along with 

threshold optimization, resulted in a perfect F1-score of 

1.0000, representing a 51.9% improvement over the 

baseline. 

For R2L attacks, the baseline F1-score was 0.8312, which 
improved to 0.9418 with class weighting and to 0.9675 with 

SMOTE. The combination of both techniques yielded an 

F1-score of 0.9984, a 20.1% improvement over the 

baseline. 

These results demonstrate the critical importance of 

addressing class imbalance in intrusion detection systems, 

particularly for rare attack types. The synergistic effect of 

combining multiple class balancing techniques proved 

particularly effective for the extremely rare U2R attacks. 

E. Discussion And Implications 

 Significance Of Performance   Achievements 

The exceptional performance achieved across all attack 

categories, particularly for the rare and sophisticated U2R 

and R2L attacks, represents a significant advancement in 

the field of network intrusion detection. Several aspects of 
these results merit particular attention: 

· Zero False Positive Rate: The complete absence of 

false positives across all attack categories is particularly 

noteworthy. In practical intrusion detection systems, 

false alarms often lead to "alert fatigue," causing 

security analysts to potentially ignore true threats. Our 

approach effectively eliminates this problem. 

· Near-Perfect Detection of Rare Attacks: The 

exceptional performance on U2R attacks (100% 
detection) and R2L attacks (99.69% detection) 

demonstrates that with proper class balancing and 

feature engineering, even extremely rare attack types 

can be reliably detected. 

· Threshold Optimization: The use of category-specific 

classification thresholds (0.3 for DoS, 0.15 for Probe, 

0.1 for R2L, and 0.05 for U2R) proved highly effective. 

This approach acknowledges the different 

characteristics and prevalence of each attack type, 

significantly outperforming the standard threshold of 

0.5. 

 Practical Implications 

Our findings have several important implications for the 
design and implementation of network intrusion detection 

systems: 

· Multi-Model Approach: The superior performance 

achieved with specialized models for each attack 

category confirms the value of a multi-model approach 

over a single unified model. This suggests that intrusion 

detection systems should be designed as an ensemble of 

specialized detectors rather than a one-size-fits-all 

solution. 

· Resource Efficiency: The feature reduction analysis 

demonstrates that highly effective detection can be 

achieved with a fraction of the full feature set. This has 

significant implications for deployment in resource-

constrained environments or for real-time detection 

systems where computational efficiency is critical. 

· Threshold Calibration: The significant performance 
improvements achieved through optimized classification 

thresholds highlight the importance of proper threshold 

calibration in operational settings. Security teams should 

invest time in finding the optimal balance point for their 

specific network environments and threat landscapes. 

· Class Imbalance Handling: The dramatic performance 

improvements achieved through class balancing 

techniques underscore the importance of addressing 

class imbalance in security applications. Organizations 
developing intrusion detection systems should 

incorporate these techniques as standard practice rather 

than treating them as optional optimizations. 

 Limitations And Considerations 

Despite the exceptional performance achieved, several 
limitations and considerations should be acknowledged: 

· Dataset Characteristics: The NSL-KDD dataset, while 

improved over the original KDD Cup '99 dataset, still 

represents network traffic patterns from an earlier era of 

cybersecurity. Modern attack techniques, particularly 

those employing encryption or advanced evasion 

methods, may present additional challenges not captured 

in our evaluation. 

· Concept Drift: Network traffic patterns and attack 

techniques evolve over time, potentially leading to a 

degradation in model performance without regular 

retraining. Operational deployments of our approach 

would require mechanisms for continuous learning and 

adaptation. 

· Feature Availability: Some of the features identified as 

highly important in our analysis may be difficult to 
extract or compute in real-time from high-volume 

network traffic. Practical implementations would need 

to balance detection performance with computational 

feasibility. 

· Base Rate Fallacy: While our model achieved zero 

false positives in the test dataset, in real- world 

deployments with vastly more normal traffic than 

attacks, even a tiny false positive rate could generate a 

large absolute number of false alarms. The practical 
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significance of our results should be considered in the 

context of specific deployment environments. 

F. Future Research Directions 

Building on the exceptional results achieved, several 

promising directions for future research emerge: 

 Adversarial Robustness: Investigating how our model 

performs against adversarial examples specifically 

designed to evade detection. This research could help 

develop more robust models that maintain high 

performance even when faced with sophisticated 

evasion attempts. 

 Transfer Learning to Modern Attacks: Exploring 

how the knowledge captured by our models can be 
transferred to detect emerging attack vectors not 

represented in the NSL-KDD dataset, potentially 

requiring fewer labeled examples of new attack types. 

 Interpretable Anomaly Detection: Combining our 

highly accurate classification approach with anomaly 

detection techniques to identify novel attacks while 

providing interpretable explanations for security 

analysts. 

 Temporal Pattern Analysis: Extending our feature set 

to better capture the temporal and sequential aspects of 

multi-stage attacks, potentially incorporating recurrent 
neural networks or attention mechanisms to model 

attack progression over time. 

 Deployment Optimization: Investigating techniques to 

further reduce the computational requirements of our 

approach without sacrificing detection performance, 

focusing particularly on feature extraction costs and 

inference speed for real-time applications. 

V. CONCLUSION 

This study was driven by the increasing relevance of 
cybersecurity in conjunction with advances in machine 

learning technologies. We investigated the integration of 

machine learning techniques into cybersecurity systems, 

with a particular focus on their ability to support intelligent, 

data-driven decision-making processes. Emphasis was 

placed on how these methods interpret and utilize security-

related data to improve detection accuracy and response 

efficiency against evolving cyber threats. The review 

discussed recent developments and persisting challenges in 

applying machine learning to cybersecurity, with special 

attention to Intrusion Detection Systems (IDS). These 

systems were analyzed based on their data acquisition 
methods, underscoring how logs can assist in detecting SQL 

injection, U2R, and R2L attacks, while packet based 

analysis proves valuable in identifying both U2R and R2L 

threats. 

This work illustrates the substantial yet underutilized 

capabilities of machine learning-based approaches when 

compared to traditional rule-based security mechanisms. It 

provides an overview of key datasets and frameworks 

necessary for the continued evolution of the field. Several 

critical security issues were identified, offering direction for 

innovation and refinement in future machine learning 
implementations for cybersecurity. Looking ahead, further 

research will aim to explore the practical deployment of ML 

models for real-time network traffic analysis—a task made 

complex by the variability and encrypted nature of data 

packets. A specific area of interest is Homomorphic 

Encryption, which allows computation on encrypted data 

without decryption; although briefly discussed, this 

technique warrants deeper investigation. Additionally, the 

rising impact of quantum computing on current 

cryptographic standards, particularly public key encryption, 

calls for comprehensive analysis due to its potential to 

compromise existing systems. Finally, the advancement of 

machine learning in cybersecurity will rely heavily on 
collaboration between researchers, ML practitioners, and 

institutions. Such multidisciplinary cooperation is essential 

for developing robust datasets and scalable solutions that 

can adapt to the constantly shifting threat landscape, 

ultimately contributing to a more secure and resilient digital 

ecosystem. 

A conclusion section is not required. Although a conclusion 

may review the main points of the paper, do not replicate 

the abstract as the conclusion. A conclusion might elaborate 

on the importance of the work or suggest applications and 

extensions. 
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